課程資訊
課程名稱
最佳控制
Optimal Control 
開課學期
108-2 
授課對象
電機資訊學院  生醫電子與資訊學研究所  
授課教師
張時中 
課號
EE5051 
課程識別碼
921 U2330 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期二2,3,4(9:10~12:10) 
上課地點
電二101 
備註
總人數上限:30人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1082EE5051_OC 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

1. Introduction and course overview
2. Unconstrained nonlinear optimization-line search, gradient and Newton methods;
3. Constrained nonlinear optimization-Lagrange multipliers.
4. Dynamic programming: principle of optimality, dynamic programming, discrete-tme LQR;
5. Dynamic programming in continuous time: Hamilton-Jacobi-Bellman equation, continuous-time LQR
6. Numerical solution in MATLAB and term project definition
7. Midterm exam
8. Calculus of variations
9. Calculus of variations applied to optimal control
10. Properties of optimal control solution
11. Constrained optimal control
12. Singular arcs
13. Estimators/Observers
14. Final exam
15. Term project presentation 

課程目標
This course studies basic optimization and the principles of optimal control. It will be mainly on deterministic and some stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle. It will include examples and applications of multiple disciplines to motivate both theoretic study and solution algorithm design. Target students include those interested in the areas of optimization and control of various dynamic systems such as energy systems, robots, vehicles, communication networks, socioeconomic systems and biological systems. 
課程要求
Linear Algebra, Differential Equations, Control Systems or Linear Systems, or consent of instructor. 
預期每週課後學習時數
 
Office Hours
備註: TBD 
指定閱讀
1. Principles of Optimal Control - MIT OpenCourseWare
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/
2. B.D.O. Anderson and J.B. Moore, Optimal Control Linear Quadratic Methods, Prentice Hall
3. F.L. Lewis and V.L. Syrmos, Optimal Control, John Wiley & Sons.
4. Prof. D. P. Bertsekas' Course Lecture Slides, 2015, http://www.athenasc.com/DP_Slides_2015.pdf
 
參考書目
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Classroom Participation  
5% 
 
2. 
Homework 
20% 
Late homework will not be accepted except officially approved reasons.  
3. 
Term project 
25% 
 
4. 
Mid Term 
30% 
 
5. 
Final Exam 
20% 
 
 
課程進度
週次
日期
單元主題
第1週
03/03  Review of Dynamic Systems and Control Introduction to Optimization Typical Problems in Optimal Control and Estimation Reinforcement Learning and Optimal Control Course Overview and Syllabus Reading Assignment: Robert Stengel, “2018 Seminar Slides for Optimal Control and Estimation, seminar 1” available: http://www.stengel.mycpanel.princeton.edu/MAE546Seminar1.pdf H. J. Sussmann and J. C. Willems, “300 years of optimal control: From the Brachystochrone to the Maximum Principle,” IEEE Control Systems, 1997. Chapter 1, F.L. Lewis and V.L. Syrmos, Optimal Control, http://www.uta.edu/utari/acs/FL books/Lewis optimal control 3rd edition 2012.pdf  
第2週
03/10  Unconstrained Nonlinear Optimization
Convexity
Line search
Gradient method
Newton method
Reading Assignments:
1. J. P. How, Principles of Optimal Control - MIT OpenCourseWare
Lecture note - Unit 1
2. Chapter 7 and Chapter 8 (Sections 8.1-8.8), Linear and Nonlinear Programming Programming. Third Edition. David G. Luenberger. Stanford University. Yinyu Ye. Stanford University
https://eng.uok.ac.ir/mfathi/Courses/Advanced%20Eng%20Math/Linear%20and%20Nonlinear%20Programming.pdf
 
第3週
03/17  Unconstrained Nonlinear Optimization
Line search: Armijo rule
Optimality conditions N-dimension problems
Gradient method
Newton method
Constrained Optimization
Optimality conditions
Lagrange multipliers
Reading Assignments:
1. J. P. How, Principles of Optimal Control - MIT OpenCourseWare
Lecture note - Unit 1
2. Chapter 7 and Chapter 8 (Sections 8.1-8.8), Linear and Nonlinear Programming Programming. Third Edition. David G. Luenberger. Stanford University. Yinyu Ye. Stanford University
https://eng.uok.ac.ir/mfathi/Courses/Advanced%20Eng%20Math/Linear%20and%20Nonlinear%20Programming.pdf
 
第4週
03/24  Constrained Optimization (Cont.)
Optimality conditions
Lagrange multipliers
Dynamic Programming – Introduction
Discrete time system: DP equation and example
Continuous time system: DP equation and example
Reading Assignments:
1. Chapter 11, Linear and Nonlinear Programming Programming. Third Edition. David G. Luenberger. Stanford University. Yinyu Ye. Stanford University
https://eng.uok.ac.ir/mfathi/Courses/Advanced%20Eng%20Math/Linear%20and%20Nonlinear%20Programming.pdf
2. Lec 2 , J. P. How, Principles of Optimal Control - MIT OpenCourseWare
Lecture note
3. Chapter 2 , F.L. Lewis and V.L. Syrmos, Optimal Control. 
第5週
03/31  Duality in Nonlinear Convex Programming
Conjugate functions
Dual convex program
Duality and Optimality
Dynamic Programming
Principle of optimality
Dynamic programming – Discrete time
Discrete Time LQR and DP Solution
Reading Assignments:
Chapter 5, “Duality in Nonlinear Convex Programming,” Nonlinear Programming-Analysis and Methods, M. Avriel, Prentic-Hall, 1976.
EE363: Lecture 1 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/dlqr.pdf
F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal Control Chapter 6.
J. P. How, Principles of Optimal Control - MIT OpenCourseWare
Lecture note – Lec 3 Prof. Bertsekas' Course Lecture Slides, 2015 Lecture 2 and Lecture 3 (pages 15~36/302) 
第6週
04/07  Dual Method
Discrete Time LQR and DP Solution-Finite Horizon
LQR cost function
multi-objective interpretation
LQR via least-squares
dynamic programming solution
steady-state LQR control
extensions: time-varying systems, tracking problems
LQR via Lagrange Multipliers
useful matrix identities
linearly constrained optimization
Reading Assignments:
EE363: Lecture 1 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/dlqr.pdf
EE363: Lecture 2 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/lqr-lagrange.pdf
F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal Control Chapter 2.
 
第7週
04/14  Discrete Time LQR and DP Solution-Finite Horizon
dynamic programming solution (Cont.)
steady-state LQR control
extensions: time-varying systems, tracking problems
LQR via Lagrange Multipliers
useful matrix identities
linearly constrained optimization
Infinite Horizon LQR via Lagrange Multipliers
infinite horizon LQR problem
dynamic programming solution
receding horizon LQR control
closed-loop system
Reading Assignments:
EE363: Lecture 1, 2 & 3 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/dlqr.pdf
https://stanford.edu/class/ee363/lectures/lqr-lagrange.pdf
https://stanford.edu/class/ee363/lectures/dlqr-ss.pdf
F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal Control Chapter 2.
 
第8週
04/21  Differential Dynamic Programming [1,2]
Introduction
Applications to 大甲溪、濁水溪水力發電調度
Continuous Time LQR
Continuous-time LQR problem
Dynamic programming solution
Hamiltonian system and two point boundary value problem
Infinite horizon LQR
Direct solution of ARE via Hamiltonian
Reading Assignments:
S. Yakowitz and B. Rutherford, “Computational Aspects of Discrete-Time Optimal Control,” Applied Mathematica and Computation, 15:29-45, 1984.
S. C. Chang, C. H. Chen, I. K. Fong, P. B. Luh, ”Hydroelectric Generation Scheduling with an Effective Differential Dyanmic Programming Algorithm,” IEEE Trans. on Power System Engienering, Aug. 1990. 
EE363: Lecture 4 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/clqr.pdf
 
第9週
04/28  Continuous Time LQR
Hamiltonian system and two point boundary value problem (Cont.)
Infinite horizon LQR
Direct solution of ARE via Hamiltonian
Discrete Time Stochastic Optimal Control
Linear-quadratic stochastic control problem
Solution via dynamic programming
Introduction to Stochastic Dynamic Programming
The basic problem, Principle of optimality
DP example: Stochastic problem
The general DP algorithm
State augmentation
Reading Assignments:
EE363: Lecture 4 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/clqr.pdf
EE363: Lecture 5 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/stoch_lqr.pdf
Dimitri P. Bertsekas, Lecture Slides on Dynamic Programming, MIT
http://www.mit.edu/~dimitrib/DP_Slides_2015.pdf
 
第10週
5/5  Midterm Exam (Closed Book)
Scope: Week1 - Week8 subjects. 
第11週
05/12  Discrete Time Stochastic Optimal Control (Cont.)
Linear-quadratic stochastic control problem
Solution via dynamic programming
Introduction to Stochastic Dynamic Programming
The basic problem, Principle of optimality
DP example: Stochastic problem
The general DP algorithm
State augmentation
Reading Assignments:
EE363: Lecture 5 Slides Professor Stephen Boyd, Stanford University, https://stanford.edu/class/ee363/lectures/stoch_lqr.pdf
Dimitri P. Bertsekas, selected parts of Lecture 2 ~5 Slides on Dynamic Programming, MIT
http://www.mit.edu/~dimitrib/DP_Slides_2015.pdf
 
第12週
05/19  Review of Continuous Time Optimal Control
Basic Problem of Calculus of Variations (CoV)
CoV: Fixed terminal condition
Euler-Lagrange Equation
CoV: Free terminal conditions
CoV Examples
Term Project Proposal Presentation
Corner Constraint & Terminal State Constraint

Reading Assignments:
J. P. How, Principles of Optimal Control - MIT OpenCourseWare Lecture note – Lec 5 
D. Kirk, Optimal Control Theory- An introduction, Chapter 4 
D. Liberzon, Calculus of Variations and Optimal Control Theory, Chapter 2 
D. S. Naidu, Optimal Control Systems, Chapter 2
 
第13週
05/26  CoV: Fixed terminal condition
Euler-Lagrange Equation
CoV: Free terminal conditions
CoV Examples
Corner Constraint & Terminal State Constraint
Simple Optimal Control Problem
Hamiltonian & necessary conditions of OC

Reading Assignments:
J. P. How, Principles of Optimal Control - MIT OpenCourseWare Lecture note – Lecs 5 ,6
D. Kirk, Optimal Control Theory- An introduction, Chapter 4 
D. Liberzon, Calculus of Variations and Optimal Control Theory, Chapter 2 
D. S. Naidu, Optimal Control Systems, Chapter 2
 
第14週
06/02  Corner Constraint & Terminal State Constraint
Simple Optimal Control Problem
Hamiltonian & necessary conditions of OC
Linear Quadratic Optimal Control
Zermelo’s problem


Reading Assignments:
J. P. How, Principles of Optimal Control - MIT OpenCourseWare Lecture note – Lec 5, 6 (Slides adopted from How’s notes)
D. Kirk, Optimal Control Theory- An introduction, Chapter 4 
D. Liberzon, Calculus of Variations and Optimal Control Theory, Chapter 3 
D. S. Naidu, Optimal Control Systems, Chapter 4
 
第15週
06/09  Linear Quadratic Optimal Control
Zermelo’s Problem (Skip)
Optimal Control with Point State Constraints
Optimal Control with Input Constraints
Pontryagin’s Maximum/Minimum Principle (PMP)
Application of PMP: Minimum Time Example


Reading Assignments:
J. P. How, Principles of Optimal Control - MIT OpenCourseWare Lecture note – Lec 8 & 9
D. Kirk, Optimal Control Theory- An introduction, Chapter 5
D. Liberzon, Calculus of Variations and Optimal Control Theory, Chapter 4 
D. S. Naidu, Optimal Control Systems, Chapter 6
 
第16週
06/16  Final Exam
Scope:
1. Subjects of mid-term exam 30%
2. Simple LQG Optimal Control, Calculus of Variation and Optimal Control 70% (Lecture Notes 10 - 14 and Homework Problems). 
第17週
06/23  Submit to COOL slides before 6/23/2020)
Presentation: 6/23/2020
Final report due: by the end of 6/26/2020
Please be aware of the plagiarism issue and give suitable citations and references.